3.371 \(\int \frac{A+B x^2}{\sqrt{x} (a+b x^2)} \, dx\)

Optimal. Leaf size=235 \[ -\frac{(A b-a B) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}+\frac{(A b-a B) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}-\frac{(A b-a B) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{3/4} b^{5/4}}+\frac{(A b-a B) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} a^{3/4} b^{5/4}}+\frac{2 B \sqrt{x}}{b} \]

[Out]

(2*B*Sqrt[x])/b - ((A*b - a*B)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(3/4)*b^(5/4)) + ((A*
b - a*B)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(3/4)*b^(5/4)) - ((A*b - a*B)*Log[Sqrt[a] -
 Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(3/4)*b^(5/4)) + ((A*b - a*B)*Log[Sqrt[a] + Sqrt[2
]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(3/4)*b^(5/4))

________________________________________________________________________________________

Rubi [A]  time = 0.176065, antiderivative size = 235, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.364, Rules used = {459, 329, 211, 1165, 628, 1162, 617, 204} \[ -\frac{(A b-a B) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}+\frac{(A b-a B) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}-\frac{(A b-a B) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{3/4} b^{5/4}}+\frac{(A b-a B) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )}{\sqrt{2} a^{3/4} b^{5/4}}+\frac{2 B \sqrt{x}}{b} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*x^2)/(Sqrt[x]*(a + b*x^2)),x]

[Out]

(2*B*Sqrt[x])/b - ((A*b - a*B)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(3/4)*b^(5/4)) + ((A*
b - a*B)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(3/4)*b^(5/4)) - ((A*b - a*B)*Log[Sqrt[a] -
 Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(3/4)*b^(5/4)) + ((A*b - a*B)*Log[Sqrt[a] + Sqrt[2
]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(3/4)*b^(5/4))

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B x^2}{\sqrt{x} \left (a+b x^2\right )} \, dx &=\frac{2 B \sqrt{x}}{b}-\frac{\left (2 \left (-\frac{A b}{2}+\frac{a B}{2}\right )\right ) \int \frac{1}{\sqrt{x} \left (a+b x^2\right )} \, dx}{b}\\ &=\frac{2 B \sqrt{x}}{b}-\frac{\left (4 \left (-\frac{A b}{2}+\frac{a B}{2}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^4} \, dx,x,\sqrt{x}\right )}{b}\\ &=\frac{2 B \sqrt{x}}{b}+\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{\sqrt{a}-\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{\sqrt{a} b}+\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{\sqrt{a}+\sqrt{b} x^2}{a+b x^4} \, dx,x,\sqrt{x}\right )}{\sqrt{a} b}\\ &=\frac{2 B \sqrt{x}}{b}+\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{a} b^{3/2}}+\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{a} b^{3/2}}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a}}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a}}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{x}\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}\\ &=\frac{2 B \sqrt{x}}{b}-\frac{(A b-a B) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}+\frac{(A b-a B) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}+\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{3/4} b^{5/4}}-\frac{(A b-a B) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{3/4} b^{5/4}}\\ &=\frac{2 B \sqrt{x}}{b}-\frac{(A b-a B) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{3/4} b^{5/4}}+\frac{(A b-a B) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )}{\sqrt{2} a^{3/4} b^{5/4}}-\frac{(A b-a B) \log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}+\frac{(A b-a B) \log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{b} x\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}\\ \end{align*}

Mathematica [A]  time = 0.128736, size = 166, normalized size = 0.71 \[ \frac{(a B-A b) \left (\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )-\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )+2 \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )-2 \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )\right )}{2 \sqrt{2} a^{3/4} b^{5/4}}+\frac{2 B \sqrt{x}}{b} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*x^2)/(Sqrt[x]*(a + b*x^2)),x]

[Out]

(2*B*Sqrt[x])/b + ((-(A*b) + a*B)*(2*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] - 2*ArcTan[1 + (Sqrt[2]*b^(
1/4)*Sqrt[x])/a^(1/4)] + Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x] - Log[Sqrt[a] + Sqrt[2]*a^
(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]))/(2*Sqrt[2]*a^(3/4)*b^(5/4))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 277, normalized size = 1.2 \begin{align*} 2\,{\frac{B\sqrt{x}}{b}}+{\frac{\sqrt{2}A}{2\,a}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) }+{\frac{\sqrt{2}A}{4\,a}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }+{\frac{\sqrt{2}A}{2\,a}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) }-{\frac{\sqrt{2}B}{2\,b}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}-1 \right ) }-{\frac{\sqrt{2}B}{4\,b}\sqrt [4]{{\frac{a}{b}}}\ln \left ({ \left ( x+\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) \left ( x-\sqrt [4]{{\frac{a}{b}}}\sqrt{x}\sqrt{2}+\sqrt{{\frac{a}{b}}} \right ) ^{-1}} \right ) }-{\frac{\sqrt{2}B}{2\,b}\sqrt [4]{{\frac{a}{b}}}\arctan \left ({\sqrt{2}\sqrt{x}{\frac{1}{\sqrt [4]{{\frac{a}{b}}}}}}+1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x^2+A)/(b*x^2+a)/x^(1/2),x)

[Out]

2*B*x^(1/2)/b+1/2*(1/b*a)^(1/4)/a*2^(1/2)*A*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)-1)+1/4*(1/b*a)^(1/4)/a*2^(1/2
)*A*ln((x+(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2))/(x-(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2)))+1/2*(1
/b*a)^(1/4)/a*2^(1/2)*A*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)+1)-1/2/b*(1/b*a)^(1/4)*2^(1/2)*B*arctan(2^(1/2)/(
1/b*a)^(1/4)*x^(1/2)-1)-1/4/b*(1/b*a)^(1/4)*2^(1/2)*B*ln((x+(1/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2))/(x-(1
/b*a)^(1/4)*x^(1/2)*2^(1/2)+(1/b*a)^(1/2)))-1/2/b*(1/b*a)^(1/4)*2^(1/2)*B*arctan(2^(1/2)/(1/b*a)^(1/4)*x^(1/2)
+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(b*x^2+a)/x^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.924506, size = 1347, normalized size = 5.73 \begin{align*} \frac{4 \, b \left (-\frac{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac{1}{4}} \arctan \left (\frac{\sqrt{a^{2} b^{2} \sqrt{-\frac{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}} +{\left (B^{2} a^{2} - 2 \, A B a b + A^{2} b^{2}\right )} x} a^{2} b^{4} \left (-\frac{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac{3}{4}} +{\left (B a^{3} b^{4} - A a^{2} b^{5}\right )} \sqrt{x} \left (-\frac{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac{3}{4}}}{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}\right ) + b \left (-\frac{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac{1}{4}} \log \left (a b \left (-\frac{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac{1}{4}} -{\left (B a - A b\right )} \sqrt{x}\right ) - b \left (-\frac{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac{1}{4}} \log \left (-a b \left (-\frac{B^{4} a^{4} - 4 \, A B^{3} a^{3} b + 6 \, A^{2} B^{2} a^{2} b^{2} - 4 \, A^{3} B a b^{3} + A^{4} b^{4}}{a^{3} b^{5}}\right )^{\frac{1}{4}} -{\left (B a - A b\right )} \sqrt{x}\right ) + 4 \, B \sqrt{x}}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(b*x^2+a)/x^(1/2),x, algorithm="fricas")

[Out]

1/2*(4*b*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4)*arctan((sq
rt(a^2*b^2*sqrt(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5)) + (B^2*a^2
 - 2*A*B*a*b + A^2*b^2)*x)*a^2*b^4*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(
a^3*b^5))^(3/4) + (B*a^3*b^4 - A*a^2*b^5)*sqrt(x)*(-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b
^3 + A^4*b^4)/(a^3*b^5))^(3/4))/(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)) + b*(
-(B^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4)*log(a*b*(-(B^4*a^4 -
 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4) - (B*a - A*b)*sqrt(x)) - b*(-(B
^4*a^4 - 4*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4)*log(-a*b*(-(B^4*a^4 - 4
*A*B^3*a^3*b + 6*A^2*B^2*a^2*b^2 - 4*A^3*B*a*b^3 + A^4*b^4)/(a^3*b^5))^(1/4) - (B*a - A*b)*sqrt(x)) + 4*B*sqrt
(x))/b

________________________________________________________________________________________

Sympy [A]  time = 10.1895, size = 371, normalized size = 1.58 \begin{align*} \begin{cases} \tilde{\infty } \left (- \frac{2 A}{3 x^{\frac{3}{2}}} + 2 B \sqrt{x}\right ) & \text{for}\: a = 0 \wedge b = 0 \\\frac{2 A \sqrt{x} + \frac{2 B x^{\frac{5}{2}}}{5}}{a} & \text{for}\: b = 0 \\\frac{- \frac{2 A}{3 x^{\frac{3}{2}}} + 2 B \sqrt{x}}{b} & \text{for}\: a = 0 \\- \frac{\sqrt [4]{-1} A \log{\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 a^{\frac{3}{4}} b^{12} \left (\frac{1}{b}\right )^{\frac{47}{4}}} + \frac{\sqrt [4]{-1} A \log{\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 a^{\frac{3}{4}} b^{12} \left (\frac{1}{b}\right )^{\frac{47}{4}}} - \frac{\sqrt [4]{-1} A \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{a} \sqrt [4]{\frac{1}{b}}} \right )}}{a^{\frac{3}{4}} b^{12} \left (\frac{1}{b}\right )^{\frac{47}{4}}} + \frac{\sqrt [4]{-1} B \sqrt [4]{a} \log{\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 b^{13} \left (\frac{1}{b}\right )^{\frac{47}{4}}} - \frac{\sqrt [4]{-1} B \sqrt [4]{a} \log{\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac{1}{b}} + \sqrt{x} \right )}}{2 b^{13} \left (\frac{1}{b}\right )^{\frac{47}{4}}} + \frac{\sqrt [4]{-1} B \sqrt [4]{a} \operatorname{atan}{\left (\frac{\left (-1\right )^{\frac{3}{4}} \sqrt{x}}{\sqrt [4]{a} \sqrt [4]{\frac{1}{b}}} \right )}}{b^{13} \left (\frac{1}{b}\right )^{\frac{47}{4}}} + \frac{2 B \sqrt{x}}{b} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x**2+A)/(b*x**2+a)/x**(1/2),x)

[Out]

Piecewise((zoo*(-2*A/(3*x**(3/2)) + 2*B*sqrt(x)), Eq(a, 0) & Eq(b, 0)), ((2*A*sqrt(x) + 2*B*x**(5/2)/5)/a, Eq(
b, 0)), ((-2*A/(3*x**(3/2)) + 2*B*sqrt(x))/b, Eq(a, 0)), (-(-1)**(1/4)*A*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4
) + sqrt(x))/(2*a**(3/4)*b**12*(1/b)**(47/4)) + (-1)**(1/4)*A*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))
/(2*a**(3/4)*b**12*(1/b)**(47/4)) - (-1)**(1/4)*A*atan((-1)**(3/4)*sqrt(x)/(a**(1/4)*(1/b)**(1/4)))/(a**(3/4)*
b**12*(1/b)**(47/4)) + (-1)**(1/4)*B*a**(1/4)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*b**13*(1/b)
**(47/4)) - (-1)**(1/4)*B*a**(1/4)*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*b**13*(1/b)**(47/4)) +
(-1)**(1/4)*B*a**(1/4)*atan((-1)**(3/4)*sqrt(x)/(a**(1/4)*(1/b)**(1/4)))/(b**13*(1/b)**(47/4)) + 2*B*sqrt(x)/b
, True))

________________________________________________________________________________________

Giac [A]  time = 1.17921, size = 339, normalized size = 1.44 \begin{align*} \frac{2 \, B \sqrt{x}}{b} - \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{1}{4}} B a - \left (a b^{3}\right )^{\frac{1}{4}} A b\right )} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, a b^{2}} - \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{1}{4}} B a - \left (a b^{3}\right )^{\frac{1}{4}} A b\right )} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{x}\right )}}{2 \, \left (\frac{a}{b}\right )^{\frac{1}{4}}}\right )}{2 \, a b^{2}} - \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{1}{4}} B a - \left (a b^{3}\right )^{\frac{1}{4}} A b\right )} \log \left (\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, a b^{2}} + \frac{\sqrt{2}{\left (\left (a b^{3}\right )^{\frac{1}{4}} B a - \left (a b^{3}\right )^{\frac{1}{4}} A b\right )} \log \left (-\sqrt{2} \sqrt{x} \left (\frac{a}{b}\right )^{\frac{1}{4}} + x + \sqrt{\frac{a}{b}}\right )}{4 \, a b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x^2+A)/(b*x^2+a)/x^(1/2),x, algorithm="giac")

[Out]

2*B*sqrt(x)/b - 1/2*sqrt(2)*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) +
2*sqrt(x))/(a/b)^(1/4))/(a*b^2) - 1/2*sqrt(2)*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*arctan(-1/2*sqrt(2)*(sqr
t(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a*b^2) - 1/4*sqrt(2)*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*log(s
qrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^2) + 1/4*sqrt(2)*((a*b^3)^(1/4)*B*a - (a*b^3)^(1/4)*A*b)*log(
-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a*b^2)